Fuel-Efficient Engine for Cheaper, Lighter Spacecraft
Ending NASA’s Space Shuttle into orbit required more than 3.5 million pounds of fuel, which is about 15 times heavier than a blue whale. But a new type of engine — called a rotating detonation engine — promises to make rockets not only more fuel-efficient but also more lightweight and less complicated to construct. There’s just one problem: Right now, the engine is too unpredictable to be used in an actual rocket.
Researchers at the University of Washington have developed a mathematical model that describes how these engines work. With this information, engineers can, for the first time, develop tests to improve these engines and make them more stable.
Top Stories
INSIDERRF & Microwave Electronics
Germany's New Military Surveillance Jet Completes First Flight
INSIDERUnmanned Systems
This Robot Dog Detects Nuclear Material and Chemical Weapons
NewsEnergy
INSIDERManned Systems
Testing the Viability of Autonomous Laser Welding in Space
INSIDERPropulsion
Collins Develops Prototype High-Voltage Power Distribution Components for Clean...
NewsUnmanned Systems
The Unusual Machines Approach to Low-Cost Drones and Drone Components
Webcasts
Defense
Best Practices for Developing Safe and Secure Modular Software
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management...
Aerospace
Countering the Evolving Challenge of Integrating UAS Into...
Manufacturing & Prototyping
How Pratt & Whitney Uses a Robot to Help Build Jet Engines
Power
Scaling Manufacturing and Production for 'Data as a Service' Electric Drone
Test & Measurement
A Quick Guide to Multi-Axis Simulation and Component Testing