Radio Relays Improve Wireless Products
In order to transmit communications through Earth’s atmosphere, satellites and space vehicles need radio equipment that can operate at higher frequencies than on Earth. These higher frequencies, until recently, have demanded mechanical switches in radio relays. Unfortunately, the mechanical switches had some problems with frequency routing, which inspired NASA to seek more rugged, reliable solutions.
After developing a radio frequency (RF) MEMS relay under U.S. Department of Defense contracts, XCOM Wireless (Signal Hill, CA) continued its research with a Phase II Small Business Innovation Research (SBIR) contract through NASA’s Jet Propulsion Laboratory (JPL). In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact — moving microscopic metal beams into contact with special electrodes — operating much like a light switch small enough to fit on the cross-section of a human hair. They have the high speed of solid-state switches, but with mechanical contacts that outperform semiconductor technology. Also, by introducing a MEMS relay with electrostatic — and not electromechanical — actuation, XCOM was able to produce a MEMS relay that consumed less power and was easier to manufacture than earlier relays.
These MEMS relays are used for signal tuning, routing, and phase-shifting circuitry, enabling wireless systems to adapt to changing operating conditions, radar or communications waveforms, and other mission needs. For its work with NASA, XCOM Wireless concentrated on frequencies in the range of 70 GHz–100 GHz, while most commercial radio frequencies use the range from 0.1 GHz–6 GHz. Despite the difference in bandwidth, the NASA technology is a fundamental switching device now incorporated into all of XCOM’s products.
After designing these improved devices, XCOM entered into a partnership with MEMS manufacturer Innovative Micro Technology (IMT) of Santa Barbara, CA. With its NASAderived design improvements and IMT’s manufacturing abilities, XCOM automated its relay manufacturing and testing, and reduced costs to one-tenth the previous amount.
XCOM has two products made possible by the MEMS technology the company developed under the SBIR from JPL. The first is an industrial relay used for high-frequency test equipment and instrumentation: the XW3100 single pole double throw relay. The second is an RF MEMS tuning circuit for the wireless communications industry.
Although early interest for the RF MEMS technology was primarily for instrumentation for aerospace and defense industries, the opportunities are now far more varied. Newer applications include fixed and wireless broadband data link equipment, wireless network hardware, cellphones, laptop computers, and personal digital assistants.
The second product is an RF MEMS tuning circuit for use in handheld radios and cellphones. These circuits use the lowloss switch technology developed with the NASA funding, and the technology greatly improves interoperability and power consumption in tactical radios. Miniaturizing the circuits and integrating them with filter and antenna subsystems allows older and newer radios to communicate seamlessly, making multi-agency operations more efficient. The relays can switch a phone call from a cellular network to an available broadband wireless network automatically, thereby reducing the use of cellphone minutes, and reducing dependence on overloaded cellular infrastructure. Lastly, the technology can also extend battery life and reduce dropped calls.
For more information on this and other NASA spinoffs, visit http://spinoff.nasa.gov .
Top Stories
INSIDERManned Systems
Supersonic X-59 Completes Cruise Control Engine Speed Test Ahead of First Flight
INSIDERManufacturing & Prototyping
3D-Printed C-17 Replacement Part Saves Thousands for Air Force
INSIDERAerospace
Venus Aerospace’s Rotating Detonation Rocket Engine Completes First Flight...
INSIDERAerospace
Aitech’s New Palm-Sized Satellite Enables Space-Based AI Processing
INSIDERWeapons Systems
Navy Proves Cold-Gas Approach in Hypersonic Launch Test
INSIDERSoftware
Bombardier is Digitally Upgrading its Aircraft Design, Engineering and...
Webcasts
Manufacturing & Prototyping
Advancing Automotive Manufacturing with Digital Twins
Defense
Powering NewSpace Missions: Navigating the Cost vs. Reliability...
Defense
Solving Thermal Challenges in Defense: The Role of ECUs and...
Automotive
How Simulation Is Revolutionizing Automotive Design in the...
Automotive
Future-Proofing Automotive Software: Modularity, Reuse, and...
Manufacturing & Prototyping
Technological Advancements in Aluminum Brazing: Resolving 5...
Similar Stories
ArticlesAerospace
Software Defined Radio Enables Flexible Communications for NASA
ArticlesPower
90° Hybrid Coupled Power Amplifier – Pros and Cons
Application BriefsRF & Microwave Electronics
High-Reliability MEMS Switches for Radio Frequency Applications
ArticlesAerospace
Unmanned Ground Vehicle Communications Relays
ArticlesRF & Microwave Electronics
Curled RF MEMS Switches For On-Chip Design
ArticlesAerospace
Free Space Optical Communications System for Advancing Superiority on the...