Compact UV Lasers Could Spot Dangerous Substances from a Distance
For soldiers in the field, the ability to identify an object or substance based on how it responds to light could mean the difference between life and death. They could, for example, determine from a safe distance if an approaching person or vehicle is carrying an explosive device or dangerous biological agent.
Ultraviolet lasers are key to such technology. However, a laser system that sophisticated currently requires a truck to move it around and devours far too much energy. So as the Defense Advanced Research Projects Agency (DARPA) seeks better ways to detect hazardous materials and take advantage of many other applications, it's looking to a University of Wisconsin-Madison engineer with expertise in nanoscale fabrication and applied physics.
Zhenqiang (Jack) Ma, a professor of electrical and computer engineering at UW-Madison, and collaborators from Michigan State University, the University of Texas at Arlington and North Carolina-based company HexaTech Inc., have received a $4 million DARPA grant to develop compact and highly efficient light sources for ultraviolet lasers. The grant is part of a long-running DARPA project that seeks to harness the full potential of ultraviolet light in Raman spectroscopy, which uses a substance's light-scattering properties in order to identify it.
The properties of ultraviolet light make for more precise results than infrared lasers, especially at wavelengths smaller than 250 nanometers. At these wavelengths, an ultraviolet laser yields more accurate light scattering and produces significantly less light "noise" that has to be separated out. Beyond the potential military uses, success in this project would also lower cost barriers to using UV lasers in other areas, from medical testing to communication to highly accurate atomic clocks. But to be truly useful and economically viable, such a laser system needs to be portable and energy efficient and right now, the only laser systems that generate UV light at such wavelengths are larger than a desktop computer.
"In the fundamental physics, there's a big challenge here," Ma says. "The options available to generate a coherent light source are very limited. If we solve the challenges here, it will be a very compact laser. It's a tiny, tiny chip."
The project also represents a significant challenge in terms of the beam quality of the laser and in developing new laser light sources that use aluminum nitrides. Ma's UT Arlington collaborators will bring significant laser design expertise to the process, while HexaTech will contribute its background in developing advanced materials and the Michigan State team will bring critical experience with material design and charge transport along with rich experience in management and interactions with various defense
Top Stories
INSIDERRF & Microwave Electronics
Germany's New Military Surveillance Jet Completes First Flight
INSIDERUnmanned Systems
This Robot Dog Detects Nuclear Material and Chemical Weapons
NewsEnergy
INSIDERManned Systems
Testing the Viability of Autonomous Laser Welding in Space
INSIDERPropulsion
Collins Develops Prototype High-Voltage Power Distribution Components for Clean...
NewsUnmanned Systems
The Unusual Machines Approach to Low-Cost Drones and Drone Components
Webcasts
Defense
Best Practices for Developing Safe and Secure Modular Software
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management...
Aerospace
Countering the Evolving Challenge of Integrating UAS Into...
Manufacturing & Prototyping
How Pratt & Whitney Uses a Robot to Help Build Jet Engines
Power
Scaling Manufacturing and Production for 'Data as a Service' Electric Drone
Test & Measurement
A Quick Guide to Multi-Axis Simulation and Component Testing