Launching the Fastest Plane of the Future
It's a sci-fi concept that's at the center of a 25-year exploratory project: building a hypersonic aircraft that takes off from the runway and doesn't need a rest, inspection or repair after it lands – unlike the space shuttle – but can zip back around the world within an hour of landing. University of Cincinnati researchers are developing the validation metrics that could help predict the success or failure of such a model before it is even built, as test data becomes available from component, to sub-system, to the completely assembled air vehicle.
Randy Allemang, a UC professor of mechanical engineering and director of the Structural Dynamics Research Lab in the UC College of Engineering and Applied Science (CEAS), has developed a validation metric that involves principal component analysis (PCA) decomposition of simulation and test data to measure the uncertainty in how well the models match with measured data, which will ultimately determine the success in approaching how such a plane could be built. That 25-year exploratory project is led by the U.S. Air Force.
"The very early stages of testing examine the concept of a plane that would fly as much as 10 times the speed of sound, with Mach 5 being the starting point," says Allemang. "In order to be ready to build that airplane, there is a lot of technology that will need to improve over the next 20 years, and there aren't the resources to do the prototype testing like what was done in the space race of the '50s and '60s. So, we need to improve analytical capabilities to better predict what could happen."
Allemang says further testing of the PCA validation metric is expected to be conducted on an aircraft panel later this year by the Structural Sciences Center at the Air Force research labs at Wright-Patterson Air Force Base.
Top Stories
INSIDERElectronics & Computers
Army Launches CMOSS Prototyping Competition for Computer Chassis and Cards
INSIDERSoftware
The Future of Aerospace: Embracing Digital Transformation and Emerging...
ArticlesAerospace
Making a Material Difference in Aerospace & Defense Electronics
INSIDERRF & Microwave Electronics
Germany's New Military Surveillance Jet Completes First Flight
ArticlesAerospace
Microchip’s New Microprocessor to Enable Generational Leap in Spaceflight...
EditorialConnectivity
Webcasts
Power
Phase Change Materials in Electric Vehicles: Trends and a Roadmap...
Automotive
Navigating Security in Automotive SoCs: How to Build Resilient...
Automotive
Is Hydrogen Propulsion Production-Ready?
Unmanned Systems
Countering the Evolving Challenge of Integrating UAS Into Civilian Airspace
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management and XiL Testing
Defense
Best Practices for Developing Safe and Secure Modular Software
Similar Stories
Application BriefsManufacturing & Prototyping
Expendable Jet Engine Oil Tank
Application BriefsSoftware
INSIDERAerospace
Air Force Completes First Magnetic Navigation Flight on C-17
INSIDERAerospace
Research Highlights Future Hypersonic Flight Challenges
Application BriefsAerospace
Hypersonic Propulsion System Manufacturing
INSIDERRobotics, Automation & Control
Hermeus Rolls Out First Quarterhorse Hypersonic Test Aircraft